China & Generative AI

A player in the the making?

Alibaba, Tencent and Baidu join the ChatGPT rush - Nikkei Asia.pdf
Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial ScenariosDue to the complex attention mechanisms and model design, most existing vision Transformers (ViTs) can not perform as efficiently as convolutional neural networks (CNNs) in realistic industrial deployment scenarios, e.g. TensorRT and CoreML. This poses a distinct challenge: Can a visual neural network be designed to infer as fast as CNNs and perform as powerful as ViTs? Recent works have tried to design CNN-Transformer hybrid architectures to address this issue, yet the overall performance of these works is far away from satisfactory. To end these, we propose a next generation vision Transformer for efficient deployment in realistic industrial scenarios, namely Next-ViT, which dominates both CNNs and ViTs from the perspective of latency/accuracy trade-off. In this work, the Next Convolution Block (NCB) and Next Transformer Block (NTB) are respectively developed to capture local and global information with deployment-friendly mechanisms. Then, Next Hybrid Strategy (NHS) is designed to stack NCB and NTB in an efficient hybrid paradigm, which boosts performance in various downstream tasks. Extensive experiments show that Next-ViT significantly outperforms existing CNNs, ViTs and CNN-Transformer hybrid architectures with respect to the latency/accuracy trade-off across various vision tasks. On TensorRT, Next-ViT surpasses ResNet by 5.5 mAP (from 40.4 to 45.9) on COCO detection and 7.7% mIoU (from 38.8% to 46.5%) on ADE20K segmentation under similar latency. Meanwhile, it achieves comparable performance with CSWin, while the inference speed is accelerated by 3.6x. On CoreML, Next-ViT surpasses EfficientFormer by 4.6 mAP (from 42.6 to 47.2) on COCO detection and 3.5% mIoU (from 45.1% to 48.6%) on ADE20K segmentation under similar latency. Our code and models are made public at: https://github.com/bytedance/Next-ViT
Jointist: Simultaneous Improvement of Multi-instrument Transcription and Music Source Separation via Joint TrainingIn this paper, we introduce Jointist, an instrument-aware multi-instrument framework that is capable of transcribing, recognizing, and separating multiple musical instruments from an audio clip. Jointist consists of an instrument recognition module that conditions the other two modules: a transcription module that outputs instrument-specific piano rolls, and a source separation module that utilizes instrument information and transcription results. The joint training of the transcription and source separation modules serves to improve the performance of both tasks. The instrument module is optional and can be directly controlled by human users. This makes Jointist a flexible user-controllable framework. Our challenging problem formulation makes the model highly useful in the real world given that modern popular music typically consists of multiple instruments. Its novelty, however, necessitates a new perspective on how to evaluate such a model. In our experiments, we assess the proposed model from various aspects, providing a new evaluation perspective for multi-instrument transcription. Our subjective listening study shows that Jointist achieves state-of-the-art performance on popular music, outperforming existing multi-instrument transcription models such as MT3. We conducted experiments on several downstream tasks and found that the proposed method improved transcription by more than 1 percentage points (ppt.), source separation by 5 SDR, downbeat detection by 1.8 ppt., chord recognition by 1.4 ppt., and key estimation by 1.4 ppt., when utilizing transcription results obtained from Jointist. Demo available at \url{https://jointist.github.io/Demo}.